

The real world: Opportunities and constraints of sustainable infrastructure

Water sensitive infill development

- A case study for the Norman Creek catchment using water mass balance

> Xuli Meng and A/Professor Steven Kenway University of Queensland

Low-density development 2016

Infill development (Business-as-usual) 2031

Water-sensitive infill development 2031

THE UNIVERSITY

OF QUEENSLAND

(CRC WSC, 2017) WATERCENTRE

Norman Creek case study area:

Background information: Area: 3,038ha Population: 90,000

WATERCENTRE

AUSTRALIA

Water metabolism indicators	Description	Equation	Performance target
I. Indicators of resource efficiency			
Water extracted	Volume of water extracted from external sources Population of the urban area	C Population	Smaller is better
Internal harvesting ratio	Volume of freshwater harvested internally Total volume of water supplied to meet demand	$\frac{D}{C + D + R}$	Higher is better
Internal recycling ratio	Volume of water recycled internally Total volume of water supplied to meet demand	$\frac{R}{C+D+R}$	Higher is better
II. WSUD Indicators of hydrological performance ⁵			
Stormwater runoff ratio	WSUD case stormwater runoff Base case stormwater runoff	Rsx Rs0	Depends on the base case, if the base case is pre-
Total stream discharge ratio	WSUD case total stream discharge Base case total stream discharge	$\frac{(Rs + W)x}{(RS + W)0}$	development, higher is better; if the base year is BAU, lower is better.
Infiltration ratio	WSUD case groundwater infiltration Base case groundwater infiltration	GIx GI0	Higher is better
Evapotranspiration ratio	WSUD case evapotranspiration Base case evapotranspiration	$\frac{\text{ETx}}{\text{ET0}}$	Higher is better
Open space ratio	WSUD case open space Base case open space	$\frac{OSx}{OS0}$	Higher is better

C: centralised water supply, D: decentralised water supply, R: reuse of wastewater

Infill development indicators and equations developed by Kenway, et al. (2011), Renouf, et al. (2016), and Farooqui, et al. (2016)

Water mass balances:

Legend:

Norman Creek flood planning area

WSUD dwellings

Green corridor (linear park)

Thank you.

Contact me

+61 (0)403 866 337 xuli.meng@uq.net.au

https://www.linkedin.com/in/xuli-meng-a4971391/